
MULTIGRID FOR FENICSX

Abstract. Multigrid methods shape the method of choice when a self con-

taining family of triangulations of a FEM discretization is at hand to achieve

an optimal order solver. Optimal order meaning linear complexity in the num-
ber of DOFs, which is the same for the assembly of the associated linear system

of equations, making this a completely astonishing and non-trivial result of the

theory of multigrid methods.
But also in applications this outperforms classical, algebraic based, solver

routines when it comes to large scale simulations. Although, the flexibility of

modern AMG implementations do not require any such structure of meshes,
multigrid methods remain of great interest not only in academia. So an im-

plementation in the DOLFINx framework should allow for versatile extensions

and applications.
To achieve this, multiple components of the data structure associated with

mesh, geometry and topology require close analysis and a fundamentally new
feature, the necessary prolongation and restriction operators, need to be im-

plemented. This process is split into multiple isolated, but chronologically

dependent phases.

1. Technical Details

The multigrid method is an optimized solving routine for discretized variational
problems. Let us shortly state the general setting we consider. For this proposal we
stick to the setting of linear variational problems on an open bounded d-dimensional
domain Ω ⊂ Rd, d ∈ {1, 2, 3}. So for a bilinear form a : H1(Ω) ×H1(Ω) → R and
a linear form b : H1(Ω)→ R we are interested in approximating the solution of the
variational problem of finding u ∈ H1(Ω) s.t.

a(u, v) = b(v) ∀v ∈ H1(Ω).

Remark. The extension of multigrid methods to non-linear problems is outside the
reach of this project, but nevertheless a possible extension relies on an implemen-
tation of a linear method, as one then considers the (linear) variations as descent
directions of the non-linear energy.

Definition. A mesh is a decomposition T = {T1, . . . , TN} of Ω into simple poly-
hedra Ti, here we assume them to be of same type.

Definition. We say a mesh T is admissible, if it holds

(1) it covers Ω, i.e. Ω̄ =
⋃N

i=i Ti,
(2) if Ti ∩ Tj = {x}, x ∈ Rd, then x is a vertex of Ti and Tj and
(3) if Ti ∩Tj ̸= {x}, x ∈ Rd, then the intersection is a common edge (d = 2) or

face (d = 3) of Ti and Tj .

In the following all meshes are silently assumed to be admissible. The multigrid
requires the presence of a family of meshes {T0, . . . , Tn} of Ω, which are ordered in
the sense of inclusion (vertices are a subset and every edge/face/element is express-
ible as union of finer ones) as

T0 ⊂ T1 ⊂ · · · ⊂ Tn.
1

2 MULTIGRID FOR FENICSX

Remark. The index i of the triangulations Ti is often called level, originating from
the case where the Ti are the product of different uniformly refined meshes.

Every of those triangulations is associated with an approximation space Vi =
Vi(Ti) ⊂ H1(Ω). We will only consider spaces built from same elements, i.e. no
p-adaptivity and mixing of elements is considered.

The multigrid method now uses this self contained structure to speed up the
solving step of the discrete variational problem

a(uN , vN) = b(vN) ∀vN ∈ VN .

This critically depends on the restriction Ri : Vi+1 → Vi and prolongation oper-
ators Pi : Vi → Vi+1 that transfer functions between these different discretizations.
These are assumed to be linear maps and expected to be self-adjoint, i.e.

R⋆
i = Pi

which for the matrix representation of the mappings simply becomes

RT
i = Pi ∈ Rdim(Vi)×dim(Vi+1).

Remark. Self adjoint-ness guarantees that it holds

⟨Riui+1, ui⟩Vi
= ⟨ui+1, Piui⟩Vi+1

∀ui ∈ Vi, ui+1 ∈ Vi+1.

So it does not matter, wether we compare two different fine functions in terms of
restriction in a coarser space, or via a prolongation in the finer space. This is our
compatibility requirement on the interaction of the two spaces.

Algorithm 1 The complete multigrid algorithm for a discretized linear variational
problem.

Require: γ ∈ {1, 2} ▷ V - or W -cycle
Require: A1, . . . , An, Ai ∈ Rdim(Vi)×dimVi ▷ Stiffness matrix (per level)
Require: Sl : RdimVi → RdimVi ▷ Smoother (per level)
Require: ν1, ν2 ∈ N ▷ No. of pre-/post-smoothing steps
1: procedure MGM(ul, fl)
2: if l is 0 then
3: ul ← A−1

l fl ▷ Solve Alul = fl exactly
4: return ul

5: end if
6: for all i ∈ {1, . . . , γ} do
7: ul ← Sν1ul ▷ Pre-smoothing
8: rl ← fl −Alul ▷ Compute residual
9: rl−1 ← Rl−1rl ▷ Restrict residual

10: rl−1 ← MGM(0, rl−1) ▷ Recursive MGM on coarser mesh
11: ul ← ul + Pl−1rl−1 ▷ Apply prolongated correction
12: ul ← Sν2ul ▷ Post-smoothing
13: end for
14: return ul

15: end procedure

So understanding one of the operation also implies the same for its counter part,
equivalently regarding the implementation. But at this point it is not clear how
these operators may be constructed.

MULTIGRID FOR FENICSX 3

0 1

0

1

1 P 1(1) 1− P 1(1)

Figure 1. Plot of the constant one function in the coarse space, its
prolonged version P 1(1) and the difference between the expected
prolongation, which is simply the ignored basis function of the finer
space.

Let us consider an example. We consider Ω = (0, 1) and choose classic first order
Lagrange elements on T0 = {0, 1} and T1 = {0, 1

2 , 1}. Especially T1 is produced
by uniform refinement of T0 and T0 ⊂ T1 as well as V0 ⊂ V1. A first possible
prolongation P 1 (the index here does not indicate the level) is given by

P 1 =

1 0
0 0
0 1

 =⇒ R1 =

[
1 0 0
0 0 1

]
.

At a first glance, this seems like the perfect candidate, especially due to its nice
matrix structure which we can definitely find for any family of meshes. We assign
every coefficient (DOF) that has a counter part in the finer space to its value in
the coarser space. However it is not quite what we need, consider the function
1 = 1×x+1× (1−x) ∈ V0 which becomes after prolongation 1× (−2x+1)|[0, 12] +
1× (2x− 1)|[12 ,1] ∈ V1 definitely not being the constant one function (see Figure 1),

even though 1 ∈ V1.
So an additional requirement, should maybe be the following, for ui ∈ Vi it

should hold

ui ∈ Vi+1 =⇒ Piui = ui.

For the previous example such a prolongation is given by

P 2 =

1 0
1
2

1
2

0 1

 =⇒ R2 =

[
1 1

2 0
0 1

2 1

]
.

However when we consider the same setting with now a second order Lagrange
element this is no longer a reasonable requirement, as there are no functions which

4 MULTIGRID FOR FENICSX

equally exist in both approximation spaces. The piecewise C0 nature of the finer
basis and the C1 regularity of the basis of the coarse space prohibit this.

This is even worse when we think about how we may recover from this compati-
bility problem. We now know, that any interaction of the prolongation or restriction
will introduce error, and thus optimality of such operators is a hard task and a zoo
of operators has emerged that attempts to address this.

For this work, I suggest to stick to the linearized approach, i.e. assume a linear
Lagrange element associated (with the DOFs not the vertices) and construct the
prolongation and restriction operator to recover the previously suggested compati-
bility condition. For the previous example, this results in

P 3 =

1 0 0
1
2

1
2 0

0 1 0
0 1

2
1
2

0 0 1

 =⇒ R3 =

1 1
2 0 0 0

0 1
2 1 1

2 0
0 0 0 1

2 1

 .

The implementation of prolongation or restriction relies on the identification of
the neighboring DOFs in the coarser or finer mesh and is never to be implemented
using the matrix representation as this inevitably slows the performance down.
To make these computations feasible, we restrict for this project to the cases of
uniformly and adaptively refined meshes using a refinement rule, that

(1) produces between two levels at most one additional vertex on a previous
edge/face (thus limiting the maximal level difference to one) and

(2) we do not allow for hanging nodes.

Now we are ready to start planning an implementation of this.

2. Schedule of Deliverables

The critical approach to make this not trivial implementation of multigrid work
is to break it up into reasonable verifiable intermediate checkpoints. This motivates
the following timeline.

2.1. Phase 1 - Algebraic Interpolation and Restriction on Meshes. In
this phase we aim to implement a single level interpolation, i.e. prolongation and
restriction operations, in the C++ core as a strictly algebraic undertaking. Here
we aim for a efficient and verifiable minimal working example of the transfer of
linear algebra objects, not yet involving any solving, approximation spaces or other
variational problem aspects. We do not think about the implications of a FEM
space on a given mesh, and if at all think about the classic piece-wise linear hat
functions FEM setting for now.

Test cases might include (increasing in complexity, with varying uses of adaptive
and uniform refinement strategies),

• interval meshes,
• triangle and quadrilateral meshes,
• tetrahedron, hexahedron, prism and pyramid meshes.

This list is given by the supported elements of Basix and thus DOLFINx.
Also this is the critical phase for making the underlying assumptions precise and

defending against inappropriate use of the provided functionality. As for example
by calling with non-applicable combinations of meshes or meshes that we do not

MULTIGRID FOR FENICSX 5

know how to produce an interpolation/restriction operator between without further
information. This includes edge cases, that should be treated with great caution,
and thus unit tested, such as

• empty mesh,
• prolongation/restriction between the same spaces, and
• unusual linear algebra object dimensions.

As a byproduct of this, we identify the fundamentally important data structures
and objects that later on need to be managed for a multigrid FEM implementation.

2.2. Phase 2 - Two Level Multigrid FEM Simulation. Now we are ready to
think about the interconnection of the previous strictly algebraic side of things and
a FEM simulation, vectors are now interpreted as coefficient vectors and matrices
as stiffness/mass matrices.

We identify the interface required to interact with the C++ implementations
of the prolongation and restriction operation and export it to the python module.
Also we need to verify and possibly adapt to the use of higher order elements. If this
requires further adaptations, the previous unit tests are to be extended or adapted
to facilitate the extended feature set.

This phase is to be considered completed, when a simple Poisson problem with a
finer and a coarser function space passes for multiple element types, here we refrain
from using advanced solver specializations and simply use an out of the box CG
solver for smoothing purposes.

2.3. Phase 3 - A Full-blown Multigrid Demo. At this stage we are ready
to implement the necessary abstractions to facilitate a multi-level setup, as the
interfaces should not require any further tuning. This is then to be demonstrated in
a complete multigrid simulation, that highlights its strengths. For this a multigrid
preconditioned CG solver is to be used in the demo, especially as part of the python
code.

2.3.1. A scalar valued problem. For the scalar case the problem of choice is the
Poisson equation, picked due to being a linear elliptic and well studied PDE,{

−∆u = f in Ω

u = 0 on ∂Ω
.

This setting is also the one, where the showcasing of an adaptive refinement would
make the most sense, maybe on a mesh with an re-entrant corner to rectify adap-
tivity.

2.3.2. A vector valued problem. The vector valued problem of choice is the one of
linear elasticity {

−∇ · σ(u) = f in Ω

u = 0 on ∂Ω

where σ is the Cauchy stress tensor of a linear isotropic material.

6 MULTIGRID FOR FENICSX

2.4. Phase 4 - Parallelization and Benchmarking. This final phase considers
the aspects of parallelization, that might slightly alter the implementation, but is
really only feasible to test once a complete example is at hand. Especially this
might include necessary considerations for the handling of ghost nodes.

After that we are ready to assess the performance and quality of implementation
with the now finalized demo, regarding aspects of approximation quality, speed up
attained by employing a multigrid approach and parallel scaling of the method.

3. Development Experience

My previous experience in software engineering originates from my studies in
numerical and applied mathematics. Namely this includes the work on problems
regarding the implementation of

• fast solvers (direct, iterative and Krylov subspace methods),
• randomized linear algebra,
• efficient implementation of quad-/octrees,
• the finite difference and finite element method,
• shape optimization using a phase-field formulation, and
• a (flat-top) partition of unity method.

From a technical standpoint this was achieved using the following tools:

• low level languages, namely C and C++ for performance critical parts,
• export of C++ libraries as Python modules using PyBind11,
• high level languages (Python, Matlab) for rapid prototyping and evaluation,
• MPI for process parallelism, and
• third-party libraries, most prominently for the context of this proposal
PETSc, SLEPc, dolfin-adjoint and PyBind11.

This was also accompanied by the necessary tooling for team based and large
scale development, as applied in the DOLFINx project, such as clang-tidy, clang-
format, GoogleTest, code review processes and last but not least git for version
control.

4. Why this project?

The concept of multigrid methods is not only a result of software engineering
ingenuity but also from a mathematical standpoint exhibits very nicely the prob-
lem’s properties and solver characteristics to achieve an optimal complexity solver
for the FEM. This makes this for me, as a student of applied mathematics, a very
interesting problem and task.

I bring along knowledge of the theoretical background regarding multigrid meth-
ods, the more abstract setting of domain decomposition methods (of which the
multigrid methods are a subset) and the algebraic multigrid methods, which ex-
tend the idea to a mesh-free setting for general linear systems of equations.

Additionally I worked with the now legacy FEniCS and its extensions in multiple
occasions. Mostly to compare different approaches with the FEM one, which was
easiest to test and verify using FEniCS. So I am aware of the FEniCS project’s
objective, with the new DOLFINx, quite well, as I myself have been a user of the
project on multiple occasions.

In total it would be my pleasure to implement the multigrid method in the
DOLFINx framework.

	1. Technical Details
	2. Schedule of Deliverables
	2.1. Phase 1 - Algebraic Interpolation and Restriction on Meshes
	2.2. Phase 2 - Two Level Multigrid FEM Simulation
	2.3. Phase 3 - A Full-blown Multigrid Demo
	2.4. Phase 4 - Parallelization and Benchmarking

	3. Development Experience
	4. Why this project?

